Initial-value Problem

An *n*th-order initial problem is

Solve:

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g(x)$$

Subject to:

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

with *n* initial conditions.

Theorem

Let $a_n(x)$, $a_{n-1}(x)$, ..., $a_0(x)$, and g(x) be continuous on *I*, $a_n(x) \neq 0$ for all *x* on *I*. If $x = x_0$ is any point in this interval, then a solution y(x) of (1) exists on the interval and is unique.

The problem

$$3y''' + 5y'' + y' + 7y = 0, y(1) = 0, y'(1) = 0, y''(1) = 0$$

possesses the trivial solution y = 0. Since this DE with constant coefficients, ;

hence y = 0 is the only one solution on any interval containing x = 1.

Homogeneous and Non homogeneous Equations

The following DE $a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = 0$ is said to be *homogeneous;*

$$a_{n}(x)\frac{d^{n}y}{dx^{n}} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_{1}(x)\frac{dy}{dx} + a_{0}(x)y = g(x)$$

with g(x) not zero, is *nonhomogeneous*.

Let dy/dx = Dy. This symbol *D* is called a *differential operator*. We define an *n*th-order differential operator as

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \dots + a_1(x)D + a_0(x)$$

In addition, we have

$$L\{\alpha f(x) + \beta g(x)\} = \alpha L(f(x)) + \beta L(g(x))$$

so the differential operator L is a *linear operator*.

Differential Equations

We can simply write the DEs as

L(y) = 0 and L(y) = g(x)

Theorem

Let $y_1, y_2, ..., y_k$ be a solutions of the homogeneous nth-order differential equation on an interval *I*.

Then the linear combination

 $y = c_1 y_1(x) + c_2 y_2(x) + \ldots + c_k y_k(x)$

where the c_i , i = 1, 2, ..., k are arbitrary constants, is also a solution on the interval.

Superposition Principles – Homogeneous Equations

Corollary

a) $y = cy_1$ is also a solution if y_1 is a solution.

b) A homogeneous linear DE always possesses the trivial solution

y=0.

Definitions

A set of $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ is *linearly dependent* on an interval *I*, if there exists constants $c_1, c_2, ..., c_n$, *not all zero,* such that

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$

If not linearly dependent, it is *linearly independent*.

In other words, if the set is linearly independent, when

$$c_1 f_1(x) + c_2 f_2(x) + \ldots + c_n f_n(x) = 0$$

then $c_1 = c_2 = \ldots = c_n = 0$

The functions

$$f_1 = \cos^2 x$$
, $f_2 = \sin^2 x$, $f_3 = \sec^2 x$, $f_4 = \tan^2 x$ a

re linearly dependent on the interval $(-\pi/2, \pi/2)$

since

$$c_1 \cos^2 x + c_2 \sin^2 x + c_3 \sec^2 x + c_4 \tan^2 x = 0$$

when
$$c_1 = c_2 = 1$$
, $c_3 = -1$, $c_4 = 1$.

The functions

$$f_1 = x^{1/2} + 5$$
, $f_2 = x^{1/2} + 5x$, $f_3 = x - 1$, $f_4 = x^2$

are linearly dependent on the interval $(0, \infty)$, since

$$f_2 = 1 \cdot f_1 + 5 \cdot f_3 + 0 \cdot f_4$$

Definitions

Suppose each of the functions $f_1(x), f_2(x), \dots, f_n(x)$ possesses at least n-1 derivatives. The determinant $W(f_1,\dots,f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f_1' & f_2' & \cdots & f_n' \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$

is called the Wronskian of the functions.

Theorem: Criterion for Linear Independence

Let $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ be solutions of the *n*th-order homogeneous DE (6) on an interval *I*. This set of solutions is *linearly independent* if and only if

 $W(y_1, y_2, ..., y_n) \neq 0$ for every x in the interval.

Definition: Fundamental Set of a Solution

Any set $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ of *n* linearly independent solutions

is said to be a *fundamental* set of solutions.

Theorem: Existence of a Fundamental Set

There exists a fundamental set of solutions for DE on an interval *I*.

Definition: General Solution – Homogeneous Equations

Let $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ be a fundamental set of solutions of homogeneous DE (6) on an interval *I*. Then the general solution is $y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x)$

where c_i are arbitrary constants.

Differential Equations Ch4

Example

The functions $y_1 = e^{3x}$, $y_2 = e^{-3x}$ are solutions of y'' - 9y = 0 on $(-\infty, \infty)$

Now

$$W(e^{3x}, e^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

for every x.

So $y = c_1 e^{3x} + c_2 e^{-3x}$ is the general solution.

The functions $y_1 = e^x$, $y_2 = e^{2x}$, $y_3 = e^{3x}$ are solutions of y''' - 6y'' + 11y' - 6y = 0 on $(-\infty, \infty)$.

Since

$$W(e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0$$

for every real value of x.

So $y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$ is the general solution on $(-\infty, \infty)$.

Theorem

Let y_p be any particular solution of nonhomegeneous on I, and $y_1(x), y_2(x), \dots, y_k(x)$ be a fundamental set of solutions of homogeneous equation. Then the general solution is $y=c_1y_1+c_2y_2+\ldots+c_ny_n+y_p$ The function $y_p = -(11/12) - \frac{1}{2}x$ is a particular solution of

$$y''' - 6y'' + 11y' - 6y = 3x$$

The general solution is

$$y = y_c + y_p = c_1 e^x + c_2 e^{2x} + c_3 e^{3x} - \frac{11}{12} - \frac{1}{2}x$$

Given

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g_i(x)$$

where $i = 1, 2, \dots, k$.

If y_{pi} denotes a particular solution corresponding to the DE, then

$$y_p = y_{p_1}(x) + y_{p_2}(x) + \dots + y_{p_k}(x)$$

is a particular solution of

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y$$

= $g_1(x) + g_2(x) + \dots + g_k(x)$

Example

We find $y_{n1} = -4x^2$ is a particular solution of $y''-3y'+4y = -16x^2 + 24x - 8$ $y_{n2} = e^{2x}$ is a particular solution of $v''-3v'+4v = 2e^{2x}$ $y_{n3} = xe^x$ is a particular solution of $y''-3y'+4y = 2xe^{x} - e^{x}$, $y_p = y_{p_1} + y_{p_2} + y_{p_3}$ is a solution of $y'' - 3y' + 4y = -16x^{2} + 24x - 8 + 2e^{2x} + 2xe^{x} - e^{x}$ $g_2(x)$ $g_1(x)$