Preliminary Theory: Linear Equation:

Initial-value Problem
An nth-order initial problem is
Solve:

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1}}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

Subject to:

$$
y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}, \cdots, y^{(n-1)}\left(x_{0}\right)=y_{n-1}
$$

with n initial conditions.

Existence and Uniqueness

Theorem

Let $a_{n}(x), a_{n-1}(x), \ldots, a_{0}(x)$, and $g(x)$ be continuous on $I, a_{n}(x)$ $\neq 0$ for all x on I. If $x=x_{0}$ is any point in this interval, then a solution $y(x)$ of (1) exists on the interval and is unique.

Example

The problem

$$
3 y^{\prime \prime \prime}+5 y^{\prime \prime}+y^{\prime}+7 y=0, y(1)=0, y^{\prime}(1)=0, y^{\prime \prime}(1)=0
$$

possesses the trivial solution $y=0$. Since this DE with constant coefficients, ;
hence $y=0$ is the only one solution on any interval containing x
$=1$.

Homogeneous and Non homogeneous Equations

The following DE

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=0
$$

is said to be homogeneous;

$$
a_{n}(x) \frac{d^{n} y}{d x^{n}}+a_{n-1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\cdots+a_{1}(x) \frac{d y}{d x}+a_{0}(x) y=g(x)
$$

with $g(x)$ not zero, is nonhomogeneous.

Differential Operators

Let $d y / d x=D y$. This symbol D is called a differential operator.
We define an n th-order differential operator as

$$
L=a_{n}(x) D^{n}+a_{n-1}(x) D^{n-1}+\cdots+a_{1}(x) D+a_{0}(x)
$$

In addition, we have

$$
L\{\alpha f(x)+\beta g(x)\}=\alpha L(f(x))+\beta L(g(x))
$$

so the differential operator L is a linear operator.

Differential Equations

We can simply write the DEs as

$$
L(y)=0 \text { and } L(y)=g(x)
$$

Superposition Principles - Homogeneous Equations

Theorem

Let $y_{1}, y_{2}, \ldots, y_{k}$ be a solutions of the homogeneous nth-order differential equation on an interval I.

Then the linear combination

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{k} y_{k}(x)
$$

where the $c_{i}, i=1,2, \ldots, k$ are arbitrary constants, is also a solution on the interval.

Superposition Principles - Homogeneous Equations

Corollary

a) $y=c y_{1}$ is also a solution if y_{1} is a solution.
b) A homogeneous linear DE always possesses the trivial solution

$$
y=0 .
$$

Linear Dependence and Linear Independence

Definitions

A set of $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ is linearly dependent on an interval I, if there exists constants $c_{1}, c_{2}, \ldots, c_{n}$, not all zero, such that

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0
$$

If not linearly dependent, it is linearly independent.
In other words, if the set is linearly independent, when
$c_{1} f_{1}(x)+c_{2} f_{2}(x)+\ldots+c_{n} f_{n}(x)=0$
then $c_{1}=c_{2}=\ldots=c_{n}=0$

Example

The functions
$f_{1}=\cos ^{2} x, f_{2}=\sin ^{2} x, f_{3}=\sec ^{2} x, f_{4}=\tan ^{2} x \mathrm{a}$
re linearly dependent on the interval $(-\pi / 2, \pi / 2)$
since
$c_{1} \cos ^{2} x+c_{2} \sin ^{2} x+c_{3} \sec ^{2} x+c_{4} \tan ^{2} x=0$
when $c_{1}=c_{2}=1, c_{3}=-1, c_{4}=1$.

Example

The functions
$f_{1}=x^{1 / 2}+5, f_{2}=x^{1 / 2}+5 x, f_{3}=x-1, f_{4}=x^{2}$
are linearly dependent on the interval $(0, \infty)$, since
$f_{2}=1 \cdot f_{1}+5 \cdot f_{3}+0 \cdot f_{4}$

Wronskian

Definitions

Suppose each of the functions $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$ possesses at least $n-1$ derivatives. The determinant

$$
W\left(f_{1}, \ldots, f_{n}\right)=\left|\begin{array}{cccc}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}{ }^{\prime} & f_{2}{ }^{\prime} & \cdots & f_{n}{ }^{\prime} \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)} & f_{2}^{(n-1)} & \cdots & f_{n}^{(n-1)}
\end{array}\right|
$$

is called the Wronskian of the functions.

Theorems

Theorem: Criterion for Linear Independence

Let $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ be solutions of the n th-order homogeneous DE (6) on an interval I. This set of solutions is
linearly independent if and only if
$W\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$ for every x in the interval.

Definition: Fundamental Set of a Solution

Any set $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ of n linearly independent solutions is said to be a fundamental set of solutions.

Theorems

Theorem: Existence of a Fundamental Set

There exists a fundamental set of solutions for DE on an interval I.

Definition: General Solution - Homogeneous Equations

Let $y_{1}(x), y_{2}(x), \ldots, y_{n}(x)$ be a fundamental set of solutions of homogeneous DE (6) on an interval I. Then the general solution
is $\quad y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)$
where c_{i} are arbitrary constants.

Example

The functions $y_{1}=e^{3 x}, y_{2}=e^{-3 x}$ are solutions of

$$
y^{\prime \prime}-9 y=0 \text { on }(-\infty, \infty)
$$

Now

$$
W\left(e^{3 x}, e^{-3 x}\right)=\left|\begin{array}{cc}
e^{3 x} & e^{-3 x} \\
3 e^{3 x} & -3 e^{-3 x}
\end{array}\right|=-6 \neq 0
$$

for every x.
So $y=c_{1} e^{3 x}+c_{2} e^{3 x}$ is the general solution.

Example

The functions $y_{1}=e^{x}, y_{2}=e^{2 x}, y_{3}=e^{3 x}$ are solutions of $y^{\prime \prime \prime}-6 y^{\prime \prime}$
$+11 y^{\prime}-6 y=0$ on $(-\infty, \infty)$.
Since

$$
W\left(e^{x}, e^{2 x}, e^{3 x}\right)=\left|\begin{array}{ccc}
e^{x} & e^{2 x} & e^{3 x} \\
e^{x} & 2 e^{2 x} & 3 e^{3 x} \\
e^{x} & 4 e^{2 x} & 9 e^{3 x}
\end{array}\right|=2 e^{6 x} \neq 0
$$

for every real value of x.
So $y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}$ is the general solution on $(-\infty, \infty)$.

General Solution - Nonhomogeneous Equations

Theorem

Let y_{p} be any particular solution of nonhomegeneous on \boldsymbol{I}, and $y_{1}(x), y_{2}(x), \ldots, y_{k}(x)$ be a fundamental set of solutions of homogeneous equation. Then the general solution is

$$
y=\mathrm{c}_{1} y_{1}+\mathrm{c}_{2} y_{2}+\ldots+\mathrm{c}_{n} y_{n}+y_{p}
$$

Example

The function $y_{p}=-(11 / 12)-1 / 2 x$ is a particular solution of

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=3 x
$$

The general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x}-\frac{11}{12}-\frac{1}{2} x
$$

Theorem

Given

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=g_{i}(x)
$$

where $i=1,2, \ldots, k$.
If $y_{p i}$ denotes a particular solution corresponding to the DE , then

$$
y_{p}=y_{p_{1}}(x)+y_{p_{2}}(x)+\cdots+y_{p_{k}}(x)
$$

is a particular solution of

$$
\begin{aligned}
& a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y \\
& =g_{1}(x)+g_{2}(x)+\cdots+g_{k}(x)
\end{aligned}
$$

Example

We find

$$
\begin{gathered}
y_{p 1}=-4 x^{2} \text { is a particular solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=-16 x^{2}+24 x-8 \\
y_{p 2}=e^{2 x} \text { is a particular solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=2 e^{2 x} \\
y_{p 3}=x e^{x} \text { is a particular solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=2 x e^{x}-e^{x} \\
, y_{p}=y_{p_{1}}+y_{p_{2}}+y_{p_{3}} \text { is a solution of } \\
y^{\prime \prime}-3 y^{\prime}+4 y=\underbrace{-16 x^{2}+24 x-8}_{g_{1}(x)}+\underbrace{2 e^{2 x}}_{g_{2}(x)}+\underbrace{2 x e^{x}-e^{x}}_{g_{3}(x)}
\end{gathered}
$$

